N79-76582

Unclas

11325

00/34

10/14/5E-14 (NASA CR OR TMX OR AD NUMBER)

(CATEGORY)

(NASA-CR-117230) DATA REPORT FOR

EXPERIMENTAL HEAT TRANSFER DISTRIBUTIONS OVER LAUNCH AND ENTRY CONFIGURATIONS ON THE 0.045-SCALE APOLLO MODEL /H-2/ WITH THE

ADDITION OF STRAKES AT A MACH NUMBER OF 10

AVAILABLE TO NASA HEADQUARTERS ONLY

CLASSIFICATION CHANGE

UNCLASSIFIED

By authority of

Changed by V. Shirley

Classified Document Master Control Station, NASA Scientific and Technical Information Facility

Accession No. 57997-64

3.1

Copy No.

SID 63-1135

DATA REPORT FOR EXPERIMENTAL HEAT TRANSFER DISTRIBUTIONS OVER LAUNCH AND ENTRY CONFIGURATIONS ON THE 0.045-SCALE APOLLO MODEL (H-2) WITH THE ADDITION OF STRAKES AT A MACH NUMBER OF 10 (U)

NAS9-150

February 1964

Volume 1 (of 6) CONTRACT NAS9-150

Exhibit I, Paragraph 5.5

This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws. Title 18 U.S.C. Section 793 and 794. Its teams sign or revelation of its contents in any manner to an unauthorized per use prohibited by law.

NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

FOREWORD

The test described herein was conducted from April 2 to April 5, 1963 under NASA Apollo contract NAS9-150. This report was prepared in accordance with Paragraph 5.5, Exhibit I.

The report was prepared by G.A. Udvardy of the Experimental Aerodynamics Unit, Space and Information Systems Division of North American Aviation, Inc.

ABSTRACT

Heat transfer distributions were measured on 0.045-scale models of the Apollo spacecraft at a Mach number of 10 through a Reynolds number range of 190,700 to 1,386,000 (based on maximum command module diameter). The angle-of-attack range for the test was 0 to 15 degrees for the launch configuration and 180 to 130 degrees for the entry configuration. A boundary layer trip was employed on the conical portion of the command module for the launch configuration without LES motor and tower, and on the heat shield for the entry configuration. Oil flow photos were taken of all configurations at several angles of attack.

The results of the test are presented in the form of plotted and tabulated data. Some qualifications and general observations of the data are also made.

CONTENTS

Section			Page
	INTRODUCTION	•	1
i	MODEL DESCRIPTION	•	3
	GENERAL	•	3
	INSTRUMENTATION	•	3
	INSTALLATION	•	3
П	TEST DESCRIPTION	•	5
	TEST FACILITIES		5
	TEST PROCEDURE	•	5
	DATA REDUCTION	•	6
	RESULTS	•	7
	LAUNCH CONFIGURATION	•	8
	ENTRY CONFIGURATION	•	9
111	CONCLUSIONS	•	11
	LAUNCH CONFIGURATION		11
	ENTRY CONFIGURATION	•	11
	REFERENCES	•	13
	APPENDIXES		
	A. PLOTTED DATA (VOLUMES 2 AND 3)	•	A-1
	B. TABULATED DATA (VOLUMES 4. 5. AND 6)		B-1

ILLUSTRATIONS

Figure		Pag
1	Typical Launch and Entry Trajectories	27
2	Basic Dimension Sketch of Models	28
3	Configuration Tested with NAA and AEDC	
	Designations	29
4	Photos of Launch Configuration With and Without	
	Service Module Reaction Control Motors	
	$(E_{43}T_{27}C_2L_{28}R_5S_6I_1B_8)$	30
5	Photos of Command-Service Module Shown With	
	Strakes and With and Without Service Module	
	Reaction Control Motors (C ₂ L ₂₈ S ₂ R ₅)	31
6	Photos of Command-Service Module With Boundary	
	Layer Trip $(C_2L_{28}S_2+t_{r16})$	32
7	Photos of Entry Configuration With Strakes and	
	Steel Balls Mounted on Entry Face to Simulate	
	Roughness $(C_2L_{28}+t_{r15})$	33
8	Photos of Entry Configuration (C2) With Sting	
	Attachment	34
9	Thermocouple Installation in Models	35
10	Basic Dimensions of the Strake and Service Module	
	Reaction Control Motors	36
11	Thermocouple Location on Command Module	
	Configuration (C2)	37
12	Thermocouple Locations on Launch Configuration	
	$HL-lB$ ($E_{43}T_{27}C_2L_{28}S_6I_1B_8$) and Command-Service	
	Module Configuration H-2 (C ₂ S ₂)	38
13	Photos of Instrumentation Entry Configuration (C2) .	39
14	Sting Arrangement and Angle-of-Attack Range for	
	the Entry Configuration (C2)	40
15	Photos of Launch Configuration Installed in Tunnel	
	$(E_{43}T_{27}C_{2}L_{28}S_{6}I_{1}B_{8})$	41
16	Specific Heat of 310 Stainless Steel Versus	
	Temperature	42
17	H-2 Data Reduction System	43
18	Heating Rate of Thermocouple Number One at	
	Various Angles of Attack on Command Module	
	Configuration	44

ILLUSTRATIONS (Cont)

	Page
Effect of RCS Motors on Launch Configuration	
Heating Rates With Strakes ($E_{43}T_{27}C_2L_{28}S_6R_5I_1B_8$)	
(Re/in. = 27,000).	45
Effect of RCS Motors on Launch Configuration	
Heating Rates With Strakes ($E_{43}T_{27}C_{2}L_{28}S_{6}R_{5}I_{1}B_{8}$).	46
Effect of RCS Motors on Launch Configuration Heating	
Rates With Strakes $(E_{43}T_{27}C_2L_{28}S_6R_5I_1B_8)$	
(Re/in. = 166,000)	47
Photos of Oil Flow Photographs of Launch	
Configuration With Strakes and Service Module	
Reaction Control Motors at Zero-Degrees Angle	
of Attack (Re/in. = 27,000)	48
Photos of Oil Flow Photographs of Launch	
Configuration With Strakes and Service Module	
Reaction Control Motors at 10 Degrees Angle	
of Attack (Re/in. = 27,000)	49
Photos of Oil Flow Photographs of Launch	
Configuration With Strakes at Zero-Degrees	
Angle of Attack (Re/in. = 27,000)	50
Photos of Oil Flow Photographs of Launch	
Configuration With Strakes at 10 Degrees Angle	
of Attack (Re/in. = 27,000)	51
Photos of Oil Flow Photographs of Command-	
Service Modules, With Reaction Control Motors,	
at Zero Degrees Angle of Attack (Re/in. = 27,000) .	52
-	
·	
(Re/in. = 27,000)	53
Photos of Oil Flow Photographs of Command-	
-	54
<u> </u>	
	55
	56
Angle of Attack (C2 Configuration) (Re/in. = 200,000).	57
	Heating Rates With Strakes (E43T27C2L28S6R5I1B8) (Re/in. = 27,000). Effect of RCS Motors on Launch Configuration Heating Rates With Strakes (E43T27C2L28S6R5I1B8). Effect of RCS Motors on Launch Configuration Heating Rates With Strakes (E43T27C2L28S6R5I1B8). Effect of RCS Motors on Launch Configuration Heating Rates With Strakes (E43T27C2L28S6R5I1B8) (Re/in. = 166,000). Photos of Oil Flow Photographs of Launch Configuration With Strakes and Service Module Reaction Control Motors at Zero-Degrees Angle of Attack (Re/in. = 27,000). Photos of Oil Flow Photographs of Launch Configuration With Strakes and Service Module Reaction Control Motors at 10 Degrees Angle of Attack (Re/in. = 27,000). Photos of Oil Flow Photographs of Launch Configuration With Strakes at Zero-Degrees Angle of Attack (Re/in. = 27,000). Photos of Oil Flow Photographs of Launch Configuration With Strakes at 10 Degrees Angle of Attack (Re/in. = 27,000). Photos of Oil Flow Photographs of Command- Service Modules, With Reaction Control Motors, at Zero Degrees Angle of Attack (Re/in. = 27,000) Photos of Oil Flow Photographs of the Command- Service Module, With Strakes and Reaction Control Motors, at 10 Degrees Angle of Attack (Re/in. = 27,000). Photos of Oil Flow Photographs of Command- Service Module With Strakes at Zero-Degrees Angle of Attack (Re/in. = 27,000) Photos of Oil Flow Photographs of Command- Service Module With Strakes at Zero-Degrees Angle of Attack (Re/in. = 27,000) Photos of Oil Flow Photographs of Command- Service Module With Strakes at Jo-Degrees Angle of Attack (Re/in. = 27,000) Photos of Oil Flow Photographs of Command- Service Module With Strakes at Jo-Degrees Angle of Attack (Re/in. = 27,000) Photos of Oil Flow Photographs of Command- Service Module With Strakes at Jo-Degrees Angle of Attack (Re/in. = 27,000) Photos of Oil Flow Photographs of Command- Service Module With Strakes at Jo-Degrees Angle of Attack (Re/in. = 27,000) Photos of Oil Flow Photographs of Strake Versus Angle of Attack (C2 Configuration) (Re/i

COMPIDENTIAL

ILLUSTRATIONS (Cont)

Figure		Page
32	Effect of Strakes on Windward Afterbody Heating	
	Rates Near Entry Angle of Attack (C2 configuration)	
	(Re/in. = 27,500)	58
33	Effect of Strakes on Windward Afterbody Heating	
	Rate Near Entry Angle of Attack (C2 configuration)	
	(Re/in. = 83, 300)	59
34	Effect of Strakes on Windward Afterbody Heating	
	Rates Near Entry Angle of Attack (C2 configuration)	
	(Re/in. = 200,000)	60
35	The Effect of Strakes on Afterbody Heating at Two	
	Reynolds Numbers (Re/in. = 83, 300 and 200, 000)	
	$(\alpha = 147^{\circ})$	61
36	Mapping of the Command Module Afterbody Heating	
	Rate Ratio (H/H_0) (Re/in. = 200,000) (α = 147°).	62
37	Leeward Afterbody Heating Ratio With and Without	
	Strakes (Re/in. = 27,500) ($\alpha = 147^{\circ}$)	63
38	Leeward Afterbody Heating Ratio With and Without	
	Strakes (Re/in. = 200,000) (α = 147°)	64
39	Photos of Oil Flow Photographs of Entry Configuration	
	With Strakes at 147-Degrees Angle of Attack	
	(Re/in. = 27,500)	65
4 0	Photos of Oil Flow Photographs of Entry Configuration	
	With Strakes at 147-Degrees Angle of Attack and	
	Model Rolled 180 Degrees (Re/in. = 27,500)	66
41	Photos of Oil Flow Photographs of Entry Configuration	
	Without Strakes at 147-Degrees Angle of Attack and	
	Model Rolled 180 Degrees (Re/in. = 27,500)	67
42	Variation of Heat Transfer Rate on Afterbody of	
	Command Module at 147-Degrees Angle of Attack at	
	Various Yaw Angles (Re/in. = 83, 300)	68
43	Variation of Heat Transfer Rate on Afterbody of	
	Command Module at 147-Degrees Angle of Attack at	
	Various Yaw Angles (Re/in. = 200,000)	69
44	Variation of Heating Rates on the Command Module	
	Entry Face at Various Angles of Attack	
	(Re/in. = 27,500)	70
4 5	Variation of Heating Rates on the Command Module	
	Entry Face at Various Angles of Attack	
	(Re/in. = 83.300).	71

ILLUSTRATIONS (Cont)

Figure		Page
46	Variation of Heating Rates on the Command Module Entry Face at Various Angles of Attack	
	(Re/in. = 200,000)	72

TABLES

Table				Page
1	Basic Model Dimensions (Scale 0.045)			14
2	Thermocouple Dimensional Location H ₂ (C ₂).			16
3	Thermocouple Dimensional Location H ₂ (C ₂ S ₂)	•	•	18
4	Thermocouple Dimensional Location HL-1B			
	$(E_{43}T_{27}C_{2}L_{28}S_{6}I_{1}B_{8})$	•	•	20
5	H-2 and HL-1B Model Run Summary, AEDC			
	Tunnel C, Mach No. 10		•	22

NOMENCLATURE

Symbols used in the tests are defined as follows:

b	Model skin thickness, ft
С	Specific heat or model material, BTU/(lbm) (°R)
C _p	Specific heat of air stream, BTU/(slug) (°R)
D	Model characteristic length, ft
Н	Enthalpy, BTU/1b
h	Heat transfer coefficient, BTU/(ft ²) (sec) (°R)
k	Coefficient of conductivity of model skin, BTU/(ft ²) (°R)
M	Mach number
Nu	Nusselt number
P	Pressure, psia
Q	Heat transfer rate, BTU/(ft ²) (sec)
r	Radius of command module at maximum section, in.
Re	Reynolds number
s	Distance of thermocouple from center of (1) entry face of command module (C2), and (2) apex on both the C2S2 and HL-1B configurations, measured along surface, in.
s/r	Nondimensional reference length
s/r*	Nondimensional reference length with s measured from thermocouple number 4 (H-2 model only)
~ .	

St

Stanton number

A TOP TO

- T Temperature, °R
- t Time, sec
- V Velocity, ft/sec
- w Density of model skin, lb_m/ft³
- Angle between model centerline and wind vector, degrees $\alpha = 0$ degrees, apex forward
- Angle between reference sting centerline and wind vector, degrees
- Angle between command module centerline and reference sting centerline, degrees
- μ Viscosity of air stream, lb_F sec/ft
- ho Density of air stream, slug/ft
- Angle between meridian lines on which thermocouples are located, degrees
- Θ Roll angle about sting centerline, degrees

Subscripts used in the tests are as follows:

- ∞ Tunnel free stream conditions
- Tunnel stagnation conditions
- w Model wall conditions
- STOR Aerodynamic heating losses not accounted for
- AERO Aerodynamic

INTRODUCTION

The Apollo heat transfer test program has been designed to obtain heat transfer data through the entire range of Reynolds numbers and Mach numbers during both the launch and entry sequence of the Apollo spacecraft flight. However, due to limitations of the existing testing facilities, only parts of the entire flight range can be simulated in any one facility.

A wind tunnel test of 0.045-scale Apollo heat transfer models of the command module (H-2) and of the spacecraft plus the S-IVB adapter (HL-1B) was conducted in Tunnel C of the von Karman Gas Dynamics Facility, Arnold Engineering and Development Center from 2 April through 4 April 1963. This was the fourth in the H-2 series of Apollo heat transfer tests that are planned in various facilities. (See References 1, 2, and 3.)

The primary objectives of the test were to determine the following:

- 1. The effect on the heat transfer distribution over the launch configuration of the addition of strakes on the command module and reaction control system rockets on the service module
- 2. The heat transfer distribution over the afterbody of the command module with and without strakes
- 3. The heat transfer distributions over the entry face and afterbody of the command module with and without a boundary layer trip
- 4. With the sting located on the windward side of command module afterbody, determine lee side heating rates
- 5. Induce transition to turbulent flow by means of a boundary layer trip near the apex of the command module plus service module configuration

Oil flow visualization photographs of the various model configurations at several angles of attack were also obtained.

Heat transfer data were obtained at M = 10 over a Reynolds number range of 197,000 to 1,388,000 (based on maximum command module diameter) for the entry configuration, and for the launch configuration over a Reynolds number range of 197,000 to 1,155,000. The flight regime simulated in this test is shown in Figure 1. The angle of attack of the launch

CONTRACTOR

configuration was varied from 0 to 15 degrees and the entry configuration from 180 to 130 degrees. The entry configuration was also tested in the yaw plane through a range of 0 to 10 degrees angle of sideslip at 147 degrees angle of attack.

The results of the test are presented in the form of plotted data which show the heat transfer coefficient ratio and the heat transfer rate distribution over every configuration tested. Summary plots are also presented showing the effect of the various model components on the heat transfer rate distribution over the models. Tabulated test results are also presented.

I. MODEL DESCRIPTION

GENERAL

Three 0.045-scale models of the Apollo vehicle were tested. The configurations were the command module with strakes in the entry position (C₂), the command (with strakes) and service modules (C₂S₂), and the launch configuration HL-1B. The HL-1B model includes the escape rocket, tower, command module, strakes, service module, reaction control system rockets, adapter connecting the service module to the instrumentation unit, instrumentation unit, and the Saturn S-IVB booster stage to Station 1039. A sketch showing the basic dimensions of the models is presented in Figure 2. Figure 3 shows all the configurations tested with their NAA and AEDC designations. Table 1 lists the dimensions of the various model components. Photographs of the assembled models are shown in Figures 4 through 7. Figure 8 is two photographs showing the command module model components and the module assembled on the sting.

The models were of thin-skin construction (0.040-inch), with the body shells fabricated from Inconel X. The model body shells were thermally insulated from all body support structure. The insulation material used was Electrobestos. A sketch showing a typical model shell support is presented in Figure 9. Complete model drawings are contained in Reference 4.

Boundary layer trips were used on the entry face of the entry configuration and on the conical surface of the command module plus service module configuration. The trips were 0.069-diameter stainless steel spheres, spot welded to the surface of the models. Figures 6 and 7 show the trips installed on the models.

The strake-on configuration utilized one instrumented and one inert strake. The noninstrumented strake was constructed of 310 stainless steel, thermally insulated from the model by layer of silicon glass laminate. The instrumented strake was a sandwich type of construction using two layers of 310 stainless steel separated by a layer of silicon glass laminate. Thermocouples were mounted on 0.020-inch thick stainless steel. The silicon glass laminate was 0.065-inch thick cut out so that the stainless could be inlaid. Figure 9 shows the installation and construction of the instrumented strake.

Service module reaction control motors were installed on the HL-1B and on the command plus service module models during part of the test. They are located just aft of the command-service module joint on the

7.5-, 97.5-, 187.5-, and 277.5-degree meridian planes. Figure 10 shows a sketch of the motors and their installation.

INSTRUMENTATION

The temperature of the model skin was monitored by ninety-eight 30-gauge constantant hermocouples, fusion welded to the inside surface of the model shell. A typical thermocouple installation is shown in Figure 8. The thermocouples were located on the models within ±0.01 inch of the dimensions shown in Figures 11 and 12. Figure 13 is a photograph of the instrumentation on the entry configuration. The model shell thickness (b) at each thermocouple location is listed in Tables 2, 3, and 4, along with the s/r and s*/r values for each thermocouple. The b values were obtained by averaging the measured values after the thermocouples were installed.

INSTALLATION

The entry configuration (H-2) was installed in the tunnel using the AEDC 12- and 50-degree split stings and the 22-degree offset sting. With this sting arrangement, the angle-of-attack range obtained was 180 to 126 degrees. The HL-1B and the command-service module configurations were installed in the tunnel using the 22- and 34-degree offset stings, allowing a -27- to 3-degree angle-of-attack range. A sketch showing the sting arrangement and angle range for the entry configuration is presented in Figure 14. Complete installation procedures for the heat transfer models are presented in Reference 5. A photograph of the launch configuration (HL-1B) mounted on the injector is presented in Figure 15.

II. TEST DESCRIPTION

TEST FACILITIES

The test was conducted in Tunnel C of the von Karman Gas Dynamics Facility, Arnold Engineering Development Center. Tunnel C is a 50-inch-diameter, continuous, closed-circuit, variable-density wind tunnel equipped with an axisymmetric, contoured nozzle. The tunnel is designed to operate at a Mach number of 10 through a range of stagnation pressures from 175 to 2400 psi, with stagnation temperatures as high as 1500 F.

The tunnel-model support system is designed so that the model can be retracted from the test section into a cooling tank for model change, modification, or for cooling heat transfer models. When the model is in the retracted position the tank is sealed from the tunnel and tunnel airflow is maintained. When the model is in the test position the tank is evacuated to approximately free-stream static pressure.

In either the retracted or extended positions, the models can be pitched ±15 degrees with a straight sting and rolled 180 degrees about the sting axis. Using a variety of stings and adapters which are available at the tunnel, coupled with the roll mechanism, various model attitudes in pitch, yaw, and roll may be attained.

Additional information concerning the operation of the tunnel is presented in Reference 6.

TEST PROCEDURE

Transient heat transfer data were obtained by reducing the model wall temperature to approximately 20 F (isothermal conditions) then introducing the model into the hot airstream and recording the change in skin temperature with time. Model exposure time varied from 7 to 10 seconds. Cooling time varied from 2 to 4 minutes after each run. Cooling was accomplished by retracting the model into the cooling tank and blowing compressed air over it.

Oil-flow visualization photos were obtained by: spraying the model with a fine coat of fluorescent impregnated oil in the cooling tank; injecting the model into the stream; and photographing the flow of oil with a motion picture camera.

Nominal tunnel test conditions are presented in the following tabulation:

Condition	Po (psi)	To (° R)	Re/inch \times 10 ⁻⁶
1	215	1670	0.27
2	460	1750	0.54
3	750	1805	0.83
4	1285	1865	1.33
5	1645	1885	1.66
6	2000	1900	2.00

A run summary listing the runs by configuration, test group, angle of attack and Reynolds number is presented in Table 4.

DATA REDUCTION

The heating rates and heat transfer coefficient data were obtained using the standard AEDC data reduction equations for heat transfer tests. The heat transfer parameters obtained from the model temperature-time data were heat transfer rate Q, heat transfer coefficient h, Stanton number St, and Nusselt number Nu. The general equations used to reduce the data were:

$$Q_{STOR} = W bc \frac{dTw}{dt} \frac{BTU}{Ft^2_{sec}}$$
 (1)

$$h*_{STOR} = \frac{Q_{STOR}}{H_o - H_w} = \frac{LB}{Ft^2_{sec}}$$
 (2)

where

$$H_o - H_w = \left(C_{p_o} T_o + \frac{v^2}{2gJ}\right) - C_{p_w} T_w \frac{BTU}{LB}$$
 (3)

$$h_{STOR} = \frac{Q_{STOR}}{T_o - T_w} = \frac{BTU}{Ft^2 \text{ sec } ^\circ R}$$
 (4)

$$St_{STOR} = \rho_{\infty}^{\frac{h}{STOR}} V_{\infty} C_{p_{\infty}}$$
 (5)

$$Nu = \frac{h_{STOR}D}{k}$$
 (6)

CONCIDENTIAL

Model wall thickness, (b), (Tables 2, 3, and 4) and material density (493 pounds per cubic foot) can be considered constants in equation (1); however, the specific heat of the model skin is a function of temperature. The variation of the specific heat of the model skin as a function of model wall temperature is shown in Figure 16.

Five heat transfer data points are computed for each run. The basis for all the heat transfer data is the temperature-time data. These data are recorded every 0.05 seconds starting at the moment the model starts its movement into the tunnel from the cooling tank, and ceases to be recorded at the instant the model starts its movement back into the cooling tank. When the model reaches tunnel centerline, the next 21 temperature time data points are fitted with a least squares parabolic curve. At the center of this curve (the eleventh time-data point) a $\Delta \, dT_{\rm w}/dt$ is evaluated and used to compute the first heat transfer data point. The second heat transfer data point is determined by using the next 21 temperature-time data points. The initial temperature-time data point for the second heat transfer data point is the eleventh point of the preceding heat transfer data point. This sequence is repeated for the next three data points, which are 0.50 seconds apart. The tabulated data for the five times are listed in Appendix B.

A Beckman 210 data acquisition system was used to record the temperature-time data from each run on magnetic tape. The magnetic tape was then programmed into an IBM 7070 digital computer that reduced the temperature-time data to heat transfer parameters. These valves, along with the tunnel operating parameters, were printed out on both magnetic tape and tabulated data sheets. The magnetic tapes containing the reduced data were then programmed into an IBM 7090 digital computer for conversion to a machine plotting format. This format was used with an SC-4020 plotter to obtain the machine plotted curves that appear in Appendix A. A block diagram of the data reduction system is shown in Figure 17.

RESULTS

The results of the test are presented in plotted form in Appendix A and tabular form in Appendix B. The plotted heat transfer data are included in pages A-1 through A-997, and tabulated on pages B-1 through B-861. Appendix A is broken up into two volumes; Volumes 2 and 3. Each volume has a plotted data index. Heat transfer plots contain Q and H/H_0 versus s/r and s/r. Appendix B is contained in Volumes 4, 5, and 6. Each volume has a tabulated data index.

The H_O values for the launch configuration are the H values (heat transfer coefficient) obtained during the test at zero-degrees angle of attack for thermocouple number one on the command-service module configuration. This was done for each Reynolds number tested. Stagnation point heat

ACMED THE

transfer coefficients that were used as the reference values for all entry configurations curves were obtained by extrapolation. Test values could not be used because of data scatter in the stagnation region of the model at $\alpha = 180$ degrees. Theoretical stagnation point heat transfer coefficients could not be used because of differences in the level of test data from one test to another.

Stagnation point heat transfer rates were determined by plotting curves of Q versus angle of attack for the number one thermocouple located in the geometric center of the entry face, and by extrapolating the value of Q at $\alpha = 156$ degrees to $\alpha = 180$ degrees. Lees distribution for a hemisphere (Reference 10) was used to fit the test data (since the command module in the heat shield forward position is essentially a hemisphere). The value of \dot{Q} at an angle of attack of 180 degrees (which resulted from making the best fit with the test data) was used at the stagnation point reference value. From this \dot{Q} stagnation point reference value the H_{O} value was calculated using Equation (2). Figure 18 shows the curves used for determining \dot{Q} stagnation point reference value.

LAUNCH CONFIGURATION

Figures 19, 20, and 21 show the effect of service module reaction control motors on the heating rates on the surface of the launch configuration. The plots are for various Reynolds numbers through an angle-of-attack range of 0 to 15 degrees. The heating rates on a station (s/r=2.45) just forward of the rocket show an increase of approximately four times the heating rates without rockets. The heating rates aft of the rocket nozzles up to the beginning of the S-IVB flare are also increased 100 percent. Aft of the flare the heating is decreased 30 percent, as compared to the heating rate without the rockets nozzles installed.

The addition of strakes also increases the heating rates, by a factor of three, on the service module. This effect is shown by comparing the heating rates at zero angle of attack, with rockets removed on the 0- and 270-degree meridian; the strakes are mounted on the 270 degree meridian, where the increase is noted.

A more graphic presentation of both of these effects is shown in the oil flow photographs of the launch configuration and the command-service module configuration, Figures 22 through 29. These show the flow pattern developed by the addition of strakes and service module reaction control motors; the high heating rate areas are the darkened areas aft of the strakes and just forward of the motors.

THE PARTY OF

Changes in Reynolds number indicated little or no effect on the proportional increase or decrease of the heating rates caused by the addition of strakes or the motors.

ENTRY CONFIGURATION

Figures 30 and 31 show the heating rates on the windward side of strakes at various angles of attack and Reynolds number. The high heating occurred in the entry range at 151-degrees angle of attack. Reynolds number has a large effect on the heating rates on the strake when they are compared to the 180-degree \dot{Q} stagnation heating rate. At an angle of attack of 151 degrees and for a Reynolds number of 27,500 per inch, the \dot{Q}/\dot{Q}_{S} equals 0.17 and for a Reynolds number of 200,000 per inch the \dot{Q}/\dot{Q}_{S} equals 0.45.

Figures 32, 33, and 34 show the effect of the strakes on the windward conical region of the command module at entry angles of attack of 147 ± 4 degrees. As shown on Figures 30 and 31 the highest rates occur at 151-degrees angle of attack. There is a definite proportional increase in afterbody heating with an increase in Reynolds number. By comparing the heating rates with and without strakes at Reynolds numbers of 27,500, 83,300, and 200,000 per inch, the rates (\dot{Q} with strake/ \dot{Q} without strake) are 1.4, 2.7, and 3.9, respectively, and show an increase with increasing Reynolds number. As the Reynolds number is increased the high heating area tends to move more towards the apex.

Figure 35 illustrates the effect of the strake on the heating rates on the afterbody of the command module at 147 degrees angle of attack. This graph shows the heating at given s/r's with and without strakes. This figure also shows the effect of Reynolds number on the afterbody heating.

Figure 36 illustrates the area which is affected by the strake. In the vicinity of the strake the high heating rates occur at the apex end on the windward side. The heating rate is about 2 or 3 times higher than the adjacent area out of the effect of strake.

Figures 37 and 38 present the strake leeward heating rates. This data was obtained by rotating the model on the sting 180 degrees. The heating rates with strakes are compared to the rates without strakes. The heating rates along the 285-degree ray located adjacent to the strake on the leeward side shows a decrease up to 70 percent over those with the strake off. The remainder of the rays show a general increase of heating rate up to 2.4 times that without the strake.

Oil flow photographs shown in Figures 39 through 41 show graphically the effect of the strake on the flow pattern on the command module afterbody.

The variation of heat transfer rates on the afterbody of the command module at 147-degrees angle of attack at various yaw angles is shown in Figures 42 and 43. As the yaw angle increases to 10 degrees, the afterbody heating rate increases up to 2 times the heating rate for 0-degree yaw. As the Reynolds number increases from 27,500 to 200,000 per inch, the high heating area moves toward the apex.

Figures 44 through 46 show the variation in heat transfer rate on the heat shield face of the command module at various angles of attack and Reynolds number.

CONFIDENTIAL

III. CONCLUSIONS

The purpose of this report has been to present the results of heat transfer tests of the spacecraft plus S-IVB adapter incorporating aero-dynamic strakes. The tests were conducted in Tunnel C of the von Karman Gas Dynamics Facility, AEDC. Some general conclusions based on a preliminary analysis are summarized below.

LAUNCH CONFIGURATION

- 1. The service module reaction control motors cause a definite increase in heat transfer rate just forward of the motors.
- 2. The addition of strakes increases the heating rates on the service module.
- 3. Changes in Reynolds number appeared to have little or no effect on the heating rates caused by the addition of strakes or motors.

ENTRY CONFIGURATION

- 1. Highest heating rates on the strakes occur at 151-degrees angle of attack.
- 2. Reynolds number has a large effect on the proportional increase of the heating on the strake and the command module afterbody.
- 3. With the model at 147-degrees angle of attack and 10 degrees yaw, the conical surface heating is increased up to twice that of a 0-degree yaw condition.

CONFIDENTIAL

REFERENCES

- 1. Biss, W. J. and D. X. Emerson. Experimental Heat Transfer

 Distributions over Launch and Entry Configurations of an 0.045-Scale

 Apollo Model (H-2) at Mach Numbers of 8 and 10. NAA S&ID,

 SID 62-993 (September 1962)
- 2. Emerson, D. X. Experimental Heat Transfer Distributions over
 Launch and Entry Configurations of 0.045-Scale Apollo Models (H-2)
 and (HL-1) at Mach Numbers 2.5 and 3.71. NAA S&ID, SID 63-685
 (June 1963)
- 3. Biss, W. J. Experimental Heat Transfer Distributions over Launch and Entry Configuration of 0.045-Scale Apollo Models H-2, HL-1 and HL-1B at Mach Number of 10. NAA S&ID, SID 63-1184.
- 4. Model Assembly Modification Apollo H-2 and HL-1 Configuration Heat Transfer Models. S&ID Drawing 7121-01268
- 5. Model Installation Apollo H-2 in Tunnels B and C at AEDC. S&ID Drawing 7121-01256
- 6. Arnold Center Test Facilities Handbook. January 1961
- 7. Fay, J. A. and F. R. Riddell. "Theory of Stagnation Point Heat Transfer in Dissociated Air," <u>Journal of the Aeronautical Sciences</u>. (February 1958) pp. 73-85
- 8. Structural Analysis of the 0.045-Scale Apollo Heat Transfer Model (H-2). NAA S&ID, SID 63-616 (11 May 1962)
- 9. Udvardy, G. A. Pretest Information for Heat Transfer Tests of the 0.045-Scale Model with Strake (H-2 and HL-1B) in AEDC-VKF, Tunnel C. NAA SID IOL 223-140-63-023 (March 1963)
- 10. Lees, L. "Laminar Heat Transfer Over Blunt-Nosed Bodies at Hypersonic Flight Speeds," <u>Jet Propulsions</u>, Vol. 26, No. 4 (April 1956), pp. 259-269, 274

Table 1. Basic Model Dimensions (Scale 0.045)

Item	Full Scale	Model Scale		
COMMAND MODULE (C ₂) (DRAWING 7121-01254-8)				
Maximum Diameter, in.	154.000	6.93		
Radius of Spherical Blunt End, in.	184.800	8.316		
Corner Radius, in.	7.700	0.346		
Afterbody Semi-angle, deg	33° 00'	33° 00'		
Afterbody Vertex Radius, in.	9.155	0.412		
Length of Body, From Apex to Center	142.538	6.4142		
of Entry Face, in.	112.330	0.1112		
Distance From Apex to Center of Launch	7.644	0.344		
Face, in.	11022			
TOWER STRUCTURE (T ₂₇) (DR	AWING 7121-0109	3)		
Length, in. (rocket base to command	120.000	5.400		
module attach point)				
Number of Longitudinal Members	4	4		
Diameter of Longitudinal Members, in.	4.000	0.180		
Diameter of Cross Braces, in.	2.670	0.120		
Distance Between Attach Points at				
Command Module:				
Pitch Plane	46.840	2.108		
Yaw Plane	50.666	2.280		
Distance Between Attach Points at				
Escape Motor:				
Pitch Plane	23.000	1.035		
Yaw Plane	36.066	1.623		
ESCAPE MOTOR (E ₄₃) (DRAW	ING 7121-01093-3	3)		
Total Laurelle in	279.500	12.577		
Total Length, in.	26.000	1.170		
Diameter of Motor, in.	54.820	2.467		
Maximum Diameter of Skirt, in.	36° 55'	36° 55'		
Skirt Flare Angle, deg	30° 00'	30° 00¹		
Nose Included Angle, deg		1		
Nose Radius, in.	2.000	0.090		

Table 1. Basic Model Dimensions (Scale 0.045) (Cont)

Item	Full Scale	Model Scale			
SERVICE MODULE (S ₂) (DRAWING 7121-01268)					
Total Length, in. (measured at tangent point to command module)	154.534	6.954			
Diameter, in.	154.000	6.930			
SERVICE MODULE PLUS ADAPTER (S ₆) (DRAWING 7121-01254-2 (3))					
Service module		_			
Total Length, in.	140.000	6.300			
Diameter, in.	154.000	6.930			
Adapter	135 000	/ 075			
Total Length, in.	135.000	6.075			
Diameter, in.	154.000	6.930			
INSTRUMENT SECTION (I ₁) (DRA	WING 7121-0126	1-11)			
Total Length, in.	58.000	2.610			
Diameter, in.	154.000	6.930			
SATURN S-IVB STAGE (B ₈) (DRA	WING 7121-0126	4-2)			
Length, Model, in.	250.000	11.250			
Maximum Diameter, in.	260.000	11.700			
Flare Angle, deg	25.000	25.000			
Flare Length, in.	125.000	5.644			
STRAKE (L ₂₈) (DRAWING	7121-01268)				
Length, in.	96.400	4.342			
Maximum Width, in.	12.000	0.540			
Slant Angle, deg	10.250	10.25			
SERVICE REACTION CONTROL MOTORS	(R ₅) (DRAWING	7121-01268)			
Maximum Diameter, Nozzle, in.	5.622	0.253			
Length, Nozzle, in.	9.889	0.445			
Diameter, Exit, in.	5.622	0.253			
Overall Length From Nozzle Exit to	31.422	1.414			
Nozzle Exit Overall Width From Nozzle Exit to Nozzle Exit	26.644	1.199			
Maximum Height, in.	10.978	0.494			

TO THE PART OF THE

Table 2. Thermocouple Dimensional Location - H_2 (C_2)

			l	1	2 2
T/C		em1 1 1 (6)	T/C	, .	
No.	s/r¹	Thickness (ft)	No.	s/r¹	Thickness (ft)
1	0	0.00300	41	1.140	0.00320
2	0.401	0.00356	42	1.083	0.00349
3	0.819	0.00320	43	1.140	0.00320
4	0.883	0.00314	44	1.373	0.00332
5	0.927	0.00296	45	1.772	0.00328
6	0.972	0.00296	46	2.115	0.00334
7	1.020	0.00279	47	2.460	0.00325
8	1.083	0.00349	48	1.083	0.00349
9	1.140	0.00326	49	1.140	0.00320
10	1.373	0.00329	50	1.373	0.00332
11	1.772	0.00335	51	1.772	0.00328
12	2.115	0.00337	52	2.115	0.00334
13	2.460	0.00327	53	0.401	0.00360
14	2.880	0.00327	54	0.819	0.00319
15	1.083	0.00349	55	0.927	0.00298
16	1.083	0.00349	56	0.972	0.00296
17	1.083	0.00349	57	1.020	0.00334
18	1.140	0.00320	58	1.083	0.00347
19	1.373	0.00332	59	1.140	0.00325
20	1.772	0.00329	60	1.373	0.00327
21	2.115	0.00334	*61	0.250	0.00350
22	2.460	0.00324	*62	1.701	0.00295
23	1.083	0.00349	*63	0.253	0.00337
24	1.373	0.00328	*64	0.451	0.00342
25	1.772	0.00332	*65	0.653	0.00347
26	2.115	0.00335	*66	0.851	0.00346
27	2.460	0.00329	*67	1.254	0.00320
28	1.083	0.00349	*68	1.371	0.00296
29	1.140	0.00320	*69	1.431	0.00296
30	1.373	0.00332	*70	1.629	0.00348
31	1.772	0.00328	*71	0.251	0.00320
32	2.115	0.00334	*72	1.083	0.00279
33	2.460	0.00325	*73	1.280	0.00348
34	1.083	0.00349	*74	0.254	0.00312
35	1.140	0.00320	*75	0.484	0.00296
36	1. 373	0.00332	*76	0.823	0.00349
37	1.772	0.00328	*77	0.145	0.00304
38	2.115	0.00334	*78	0.290	0.00298
39	2.460	0.00325	*79	0.422	0.00297
40	1.083	0.00349	*80	0.504	0.00297
L		1	L		

COMMENTALIA

Table 2. Thermocouple Dimensional Location - H₂ (C₂) (Cont)

T/C No.	s/r¹	Thickness (ft)	T/C No.	s/r¹	Thickness (ft)
*81	0.603	0.00349	408	2.367	0.00165
*82	0.416	0.00349	409	2.310	0.00165
			410	2.252	0.00164
401	2.435	0.00168	411	2.194	0.00167
402	2.310	0.00165	412	2.136	0.00167
403	2.194	0.00167	413	2.079	0.00167
404	2.079	0.00167	414	2.021	0.00167
405	1.829	0.00167	415	1.963	0.00168
406	1.713	0.00168	416	2.310	0.00164
407	1.597	0.00171	417	1.828	0.00168

r' = 3.465

^{*}s Value measured from T/C No. 4.

Table 3. Thermocouple Dimensional Location - H_2 (C_2 S_2)

T/C No.	s/r¹	Thickness (ft)	T/C No.	s/r¹	Thickness (ft)
1	0	0.00328	42	0.870	0.00321
2	0.1157	0.00294	43	1.259	0.00327
3	0.250	0.00319	44	1.650	0.00328
4	0.483	0.00321	45	1.772	0.00331
5	0.870	0.00320	46	2.240	0.00337
6	1.259	0.00326	47	3.025	0.00331
7	1.650	0.00325	48	0.870	0.00317
8	1.772	0.00337	49	1.259	0.00326
9	1. 920	0.00342	50	1.650	0.00332
10	2.240	0.00345	51	1.772	0.00332
11	2.636	0.00348	52	1.920	0.00339
12	3. 025	0.00347	53	2.240	0.00337
13	3. 415	0.00347	54	2.636	0.00337
14	0.1157	0.00295	55	3.025	0.00327
15	0.250	0.00321	56	3. 415	0.00340
16	0.483	0.00318	57	0.1157	0.00296
17	0.870	0.00321	58	0.250	0.00319
18	1.259	0.00324	59	0.483	0.00321
19	1.650	0.00327	60	0.870	0.00321
20	1.772	0.00339	61	1.259	0.00323
21	0.483	0.00317	62	1.650	0.00324
22	0.870	0.00324	63	1.772	0.00337
23	1.259	0.00325	64	2.240	0.00343
24	1.650	0.00329	65	3.025	0.00344
25	1.772	0.00333	66	0.1157	0.00296
26	1.920	0.00342	67	0.250	0.00310
27	3. 025	0.00342	68	0.483	0.00321
28	3. 415	0.00342	69	0.870	0.00321
29	0.870	0.00320	70	1.259	0.00327
30	1.259	0.00324	71	1.650	0.00331
31	1.650	0.00327	72	1.772	0.00338
32	1.772	0.00333	73	1.920	0.00340
33	2.240	0.00336	74	2.240	0.00342
34	3. 025	0.00337	75	3.025	0.00342
35	1.259	0,00296	76	3. 415	0.00343
37	1.250	0.00312	77	2.636	0.00336
38	1.920	0.00338	78	3.025	0.00340
39	2.240	0.00341	79	3. 415	0.00341
40	3. 025	0.00346	80	2.240	0.00342
41	3. 415	0.00343	81	2.636	0.00336
	I				

T/C No.	s/r¹	Thickness (ft)	T/C No.	s/r¹	Thickness (ft)
82	3.025	0.00337	408	0.513	0.00169
83	3.415	0,00340	409	0.570	0.00171
			410	0.628	0.00171
401	0.445	0.00169	411	0.686	0.00171
			412	0.744	0.00171
403	0.636	0.00169	413	0.801	0.00171
404	0.801	0.00169	414	0.859	0.00169
405	1.051	0.00169	415	0.917	0.00170
406	1.167	0.00169	416	0.570	0.00167
407	1.283	0,00172	417	1.052	0.00171

AAUBI ...

Table 4. Thermocouple Dimensional Location - HL-1B

T/C No. s/r¹ Thickness (ft) T/C No. s/r¹ Thickness (ft) 1 0.411 0.00342 49 1.307 0.00337 2 0.711 0.00342 50 1.641 0.00339 3 1.307 0.00342 51 1.772 0.00342 4 1.641 0.00358 53 3.009 0.00333 6 2.466 0.00337 54 3.393 0.00329 7 3.009 0.00336 55 3.777 0.00323 8 3.393 0.00333 56 0.411 0.00314 9 3.777 0.00333 57 0.711 0.00327 10 5.323 0.00342 59 1.307 0.00335 14 1.088 0.00342 59 1.307 0.00336 15 1.307 0.00342 60 1.641 0.00337 16 1.641 0.00342 61 3.009 0.00						
No. s/r¹ Thickness (ft) No. s/r¹ Thickness (ft) 1 0.411 0.00342 49 1.307 0.00337 2 0.711 0.00342 50 1.641 0.00339 3 1.307 0.00342 51 1.772 0.00342 4 1.641 0.00342 52 2.466 0.00342 5 1.772 0.00358 53 3.009 0.00333 6 2.466 0.00337 54 3.393 0.00329 7 3.009 0.00336 55 3.777 0.00323 8 3.393 0.00334 58 1.088 0.00314 9 3.777 0.00333 57 0.711 0.00327 10 5.323 0.00334 58 1.088 0.00331 14 1.088 0.00342 60 1.641 0.00332 15 1.307 0.00342 61 3.009 0.00332 19<	T/C			T/C		
1 0.411 0.00342 49 1.307 0.00337 2 0.711 0.00342 50 1.641 0.00339 3 1.307 0.00342 51 1.772 0.00342 4 1.641 0.00358 53 3.009 0.00333 6 2.466 0.00337 54 3.393 0.00329 7 3.009 0.00336 55 3.777 0.00329 8 3.393 0.00333 56 0.411 0.00314 9 3.777 0.00333 56 0.411 0.00314 9 3.777 0.00334 58 1.088 0.00335 14 1.088 0.00342 59 1.307 0.00336 15 1.307 0.00342 60 1.641 0.00337 16 1.641 0.00342 61 3.009 0.00337 16 1.641 0.00342 61 3.099 0.00322 20 <		s/r¹	Thickness (ft)	1	s/r'	Thickness (ft)
2 0.711 0.00342 50 1.641 0.00339 3 1.307 0.00342 51 1.772 0.00342 5 1.772 0.00358 53 3.009 0.00333 6 2.466 0.00337 54 3.393 0.00329 7 3.009 0.00336 55 3.777 0.00323 8 3.393 0.00333 56 0.411 0.00314 9 3.777 0.00333 57 0.711 0.00327 10 5.323 0.00342 59 1.307 0.00335 14 1.088 0.00342 59 1.307 0.00336 15 1.307 0.00342 60 1.641 0.00337 16 1.641 0.00342 61 3.009 0.00332 19 0.411 0.00311 62 3.393 0.00323 20 0.711 0.00326 63 3.777 0.00323 21			. (***)			
2 0.711 0.00342 50 1.641 0.00339 3 1.307 0.00342 51 1.772 0.00342 4 1.641 0.00342 52 2.466 0.00334 5 1.772 0.00358 53 3.009 0.00333 6 2.466 0.00337 54 3.393 0.00329 7 3.009 0.00333 56 0.411 0.00314 9 3.777 0.00333 56 0.411 0.00314 9 3.777 0.00334 58 1.088 0.00335 14 1.088 0.00342 59 1.307 0.00335 14 1.088 0.00342 59 1.307 0.00332 15 1.307 0.00342 61 3.009 0.00332 19 0.411 0.00311 62 3.393 0.00323 20 0.711 0.00326 63 3.777 0.00323 21	1	0.411	0.00342	49	1.307	0.00337
4 1.641 0.00342 52 2.466 0.00333 5 1.772 0.00358 53 3.009 0.00333 6 2.466 0.00337 54 3.393 0.00329 7 3.009 0.00336 55 3.777 0.00323 8 3.393 0.00333 56 0.411 0.00341 9 3.777 0.00333 57 0.711 0.00327 10 5.323 0.00342 59 1.307 0.00335 14 1.088 0.00342 60 1.641 0.00337 15 1.307 0.00342 61 3.009 0.00332 19 0.411 0.00342 61 3.009 0.00332 20 0.711 0.00326 63 3.777 0.00323 21 1.088 0.00331 64 1.088 0.00342 22 1.307 0.00328 66 1.641 0.00342 23	2	0.711	0.00342	50	1.641	0.00339
4 1,641 0.00342 52 2.466 0.00332 5 1,772 0.00358 53 3.009 0.00333 6 2.466 0.00337 54 3.393 0.00329 7 3.009 0.00336 55 3.777 0.00323 8 3.393 0.00333 56 0.411 0.00314 9 3.777 0.00333 57 0.711 0.00327 10 5.323 0.00342 59 1.307 0.00336 15 1.307 0.00342 60 1.641 0.00337 16 1.641 0.00342 61 3.009 0.00332 19 0.411 0.00342 61 3.009 0.00332 20 0.711 0.00326 63 3.777 0.00323 21 1.088 0.00331 64 1.088 0.00342 22 1.307 0.00328 66 1.641 0.00342 23	3	1.307	0.00342	51	1.772	0.00342
6 2.466 0.00337 54 3.393 0.00329 7 3.009 0.00336 55 3.777 0.00323 8 3.393 0.00333 56 0.411 0.00314 9 3.777 0.00333 57 0.711 0.00327 10 5.323 0.00342 59 1.307 0.00336 15 1.307 0.00342 60 1.641 0.00337 16 1.641 0.00342 61 3.009 0.00332 19 0.411 0.00311 62 3.393 0.00329 20 0.711 0.00326 63 3.777 0.00323 21 1.088 0.00331 64 1.088 0.00342 22 1.307 0.00328 66 1.307 0.00342 23 1.641 0.00328 66 1.641 0.00342 24 3.009 0.00333 69 0.411 0.00342 25	4	1.641	0.00342	52	2.466	0.00342
6 2.466 0.00337 54 3.393 0.00329 7 3.009 0.00336 55 3.777 0.00323 8 3.393 0.00333 56 0.411 0.00314 9 3.777 0.00333 57 0.711 0.00327 10 5.323 0.00342 59 1.307 0.00336 15 1.307 0.00342 60 1.641 0.00337 16 1.641 0.00342 61 3.009 0.00332 19 0.411 0.00311 62 3.393 0.00329 20 0.711 0.00326 63 3.777 0.00323 21 1.088 0.00331 64 1.088 0.00342 22 1.307 0.00328 66 1.307 0.00342 23 1.641 0.00328 66 1.641 0.00342 24 3.009 0.00333 69 0.411 0.00342 25		1.772	0.00358	53	3.009	0.00333
7 3,009 0.00336 55 3.777 0.00323 8 3,393 0.003333 56 0.411 0.00314 9 3,777 0.00333 57 0.711 0.00327 10 5,323 0.00342 58 1.088 0.00335 14 1.088 0.00342 59 1.307 0.00336 15 1.307 0.00342 60 1.641 0.00337 16 1.641 0.00342 61 3.009 0.00332 19 0.411 0.00342 61 3.009 0.00329 20 0.711 0.00326 63 3.777 0.00323 21 1.088 0.00331 64 1.088 0.00342 22 1.307 0.00333 65 1.307 0.00342 23 1.641 0.00328 66 1.641 0.00342 24 3.009 0.00337 71 1.307 0.00342 25			0.00337	54	3. 393	0.00329
8 3, 393 0,00333 56 0,411 0,00314 9 3,777 0,003333 57 0,711 0,00327 10 5,323 0,00342 58 1,088 0,00335 14 1,088 0,00342 59 1,307 0,00336 15 1,307 0,00342 60 1,641 0,00337 16 1,641 0,00342 61 3,009 0,00332 19 0,411 0,00311 62 3,393 0,00329 20 0,711 0,00326 63 3,777 0,00323 21 1,088 0,00331 64 1,088 0,00342 22 1,307 0,00333 65 1,307 0,00342 23 1,641 0,00328 66 1,641 0,00342 24 3,009 0,00333 69 0,411 0,00342 24 3,009 0,00327 71 1,307 0,00342 28		3.009	0.00336	55	3.777	0.00323
9 3.777 0.00333 57 0.711 0.00327 10 5.323 0.00342 58 1.088 0.00335 14 1.088 0.00342 60 1.641 0.00336 15 1.307 0.00342 61 3.009 0.00337 16 1.641 0.00342 61 3.009 0.00329 20 0.711 0.00326 63 3.777 0.00323 21 1.088 0.00331 64 1.088 0.00342 22 1.307 0.00333 65 1.307 0.00342 23 1.641 0.00328 66 1.641 0.00342 24 3.009 0.00333 69 0.411 0.00342 24 3.009 0.00327 71 1.307 0.00342 25 3.393 0.00327 71 1.307 0.00342 26 3.777 0.00327 71 1.307 0.00342 28			0.00333	56	0.411	0.00314
10 5.323 0.00334 58 1.088 0.00335 14 1.088 0.00342 59 1.307 0.00336 15 1.307 0.00342 60 1.641 0.00337 16 1.641 0.00342 61 3.009 0.00332 19 0.411 0.00326 63 3.777 0.00329 20 0.711 0.00326 63 3.777 0.00323 21 1.088 0.00331 64 1.088 0.00342 22 1.307 0.00328 66 1.641 0.00342 23 1.641 0.00328 66 1.641 0.00342 24 3.009 0.00333 69 0.411 0.00342 25 3.393 0.00327 71 1.307 0.00342 26 3.777 0.00327 71 1.307 0.00342 28 1.088 0.00331 73 3.777 0.00329 29			0.00333	57	0.711	0.00327
14 1.088 0.00342 59 1.307 0.00336 15 1.307 0.00342 60 1.641 0.00337 16 1.641 0.00342 61 3.009 0.00332 19 0.411 0.00311 62 3.393 0.00329 20 0.711 0.00326 63 3.777 0.00323 21 1.088 0.00331 64 1.088 0.00342 22 1.307 0.00328 66 1.641 0.00342 23 1.641 0.00328 66 1.641 0.00342 24 3.009 0.00333 69 0.411 0.00342 25 3.393 0.00327 71 1.307 0.00342 26 3.777 0.00327 71 1.307 0.00342 28 1.088 0.00331 73 3.777 0.00329 29 1.307 0.00342 78 3.393 0.00334 30			1	58		0.00335
15 1. 307 0. 00342 60 1. 641 0. 00337 16 1. 641 0. 00342 61 3. 009 0. 00332 19 0. 411 0. 00311 62 3. 393 0. 00329 20 0. 711 0. 00326 63 3. 777 0. 00323 21 1. 088 0. 00331 64 1. 088 0. 00342 22 1. 307 0. 00333 65 1. 307 0. 00342 23 1. 641 0. 00328 66 1. 641 0. 00342 24 3. 009 0. 00333 69 0. 411 0. 00342 25 3. 393 0. 00325 70 0. 711 0. 00342 26 3. 777 0. 00326 72 1. 641 0. 00342 28 1. 088 0. 00331 73 3. 777 0. 00329 29 1. 307 0. 00336 74 5. 323 0. 00339 31 1. 641 0. 00337 77 3. 009 0	1		i			
16 1.641 0.00342 61 3.009 0.00332 19 0.411 0.00311 62 3.393 0.00329 20 0.711 0.00326 63 3.777 0.00323 21 1.088 0.00331 64 1.088 0.00342 22 1.307 0.00328 66 1.641 0.00342 23 1.641 0.00328 66 1.641 0.00342 24 3.009 0.00333 69 0.411 0.00342 25 3.393 0.00327 71 1.307 0.00341 26 3.777 0.00327 71 1.307 0.00341 27 0.711 0.00326 72 1.641 0.00342 28 1.088 0.00331 73 3.777 0.00329 29 1.307 0.00342 78 3.393 0.00334 30 1.641 0.00337 77 3.009 0.00339 31			1			
19 0.411 0.00311 62 3.393 0.00329 20 0.711 0.00326 63 3.777 0.00323 21 1.088 0.00331 64 1.088 0.00342 22 1.307 0.00333 65 1.307 0.00342 23 1.641 0.00328 66 1.641 0.00342 24 3.009 0.00325 70 0.711 0.00342 25 3.393 0.00325 70 0.711 0.00342 26 3.777 0.00327 71 1.307 0.00342 26 3.777 0.00327 71 1.307 0.00342 28 1.088 0.00331 73 3.777 0.00329 29 1.307 0.00336 74 5.323 0.00334 30 1.641 0.00337 77 3.009 0.00339 31 1.772 0.00342 78 3.393 0.00329 33			!			
20 0.711 0.00326 63 3.777 0.00323 21 1.088 0.00331 64 1.088 0.00342 22 1.307 0.00328 65 1.307 0.00342 23 1.641 0.00328 66 1.641 0.00342 24 3.009 0.00333 69 0.411 0.00342 25 3.393 0.00325 70 0.711 0.00342 26 3.777 0.00326 72 1.641 0.00342 28 1.088 0.00331 73 3.777 0.00329 29 1.307 0.00336 74 5.323 0.00334 30 1.641 0.00337 77 3.009 0.00339 31 1.772 0.00342 78 3.393 0.00335 32 2.466 0.00337 79 3.777 0.00329 33 3.009 0.00338 80 2.466 0.00343 34				1	l .	0.00329
21 1,088 0.00331 64 1.088 0.00342 22 1,307 0.00333 65 1,307 0.00342 23 1,641 0.00328 66 1,641 0.00342 24 3,009 0.00333 69 0.411 0.00342 25 3,393 0.00325 70 0.711 0.00342 26 3,777 0.00327 71 1,307 0.00341 27 0,711 0.00326 72 1,641 0.00342 28 1,088 0.00331 73 3,777 0.00329 29 1,307 0.00336 74 5,323 0.00334 30 1,641 0.00337 77 3,009 0.00339 31 1,772 0.00342 78 3,393 0.00335 32 2,466 0.00337 79 3,777 0.00329 33 3,009 0.00338 80 2,466 0.00341 34	L			1		0.00323
22 1.307 0.00333 65 1.307 0.00342 23 1.641 0.00328 66 1.641 0.00342 24 3.009 0.00333 69 0.411 0.00342 25 3.393 0.00325 70 0.711 0.00342 26 3.777 0.00326 72 1.641 0.00342 27 0.711 0.00326 72 1.641 0.00342 28 1.088 0.00331 73 3.777 0.00329 29 1.307 0.00336 74 5.323 0.00334 30 1.641 0.00337 77 3.009 0.00339 31 1.772 0.00342 78 3.393 0.00335 32 2.466 0.00337 79 3.777 0.00329 33 3.009 0.00338 80 2.466 0.00343 34 3.393 0.00331 82 3.393 0.00339 35						
23 1.641 0.00328 66 1.641 0.00342 24 3.009 0.00333 69 0.411 0.00342 25 3.393 0.00325 70 0.711 0.00342 26 3.777 0.00326 72 1.641 0.00342 27 0.711 0.00326 72 1.641 0.00342 28 1.088 0.00331 73 3.777 0.00329 29 1.307 0.00336 74 5.323 0.00334 30 1.641 0.00337 77 3.009 0.00339 31 1.772 0.00342 78 3.393 0.00335 32 2.466 0.00337 79 3.777 0.00329 33 3.009 0.00338 81 3.009 0.00339 35 3.777 0.00319 82 3.393 0.00336 36 1.307 0.00332 83 3.777 0.00333 37	1		l .			
24 3.009 0.00333 69 0.411 0.00342 25 3.393 0.00325 70 0.711 0.00342 26 3.777 0.00327 71 1.307 0.00341 27 0.711 0.00326 72 1.641 0.00342 28 1.088 0.00331 73 3.777 0.00329 29 1.307 0.00336 74 5.323 0.00334 30 1.641 0.00337 77 3.009 0.00339 31 1.772 0.00342 78 3.393 0.00335 32 2.466 0.00337 79 3.777 0.00329 33 3.009 0.00338 80 2.466 0.00343 34 3.393 0.00333 81 3.009 0.00339 35 3.777 0.00319 82 3.393 0.00336 36 1.307 0.00332 83 3.777 0.00333 37	1		į.		1	
25 3.393 0.00325 70 0.711 0.00342 26 3.777 0.00327 71 1.307 0.00341 27 0.711 0.00326 72 1.641 0.00342 28 1.088 0.00331 73 3.777 0.00329 29 1.307 0.00336 74 5.323 0.00334 30 1.641 0.00337 77 3.009 0.00339 31 1.772 0.00342 78 3.393 0.00335 32 2.466 0.00337 79 3.777 0.00329 33 3.009 0.00338 80 2.466 0.00343 34 3.393 0.00333 81 3.009 0.00339 35 3.777 0.00319 82 3.393 0.00336 36 1.307 0.00329 83 3.777 0.00333 37 2.466 0.00341 337 7.168 0.00375 38			i e	1		
26 3.777 0.00327 71 1.307 0.00341 27 0.711 0.00326 72 1.641 0.00342 28 1.088 0.00331 73 3.777 0.00329 29 1.307 0.00336 74 5.323 0.00334 30 1.641 0.00337 77 3.009 0.00339 31 1.772 0.00342 78 3.393 0.00335 32 2.466 0.00337 79 3.777 0.00329 33 3.009 0.00338 80 2.466 0.00343 34 3.393 0.00333 81 3.009 0.00339 35 3.777 0.00319 82 3.393 0.00336 36 1.307 0.00319 82 3.393 0.00336 37 2.466 0.00341 337 7.168 0.00375 38 3.009 0.00333 339 8.113 0.00383 39 <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>					1	
27 0.711 0.00326 72 1.641 0.00342 28 1.088 0.00331 73 3.777 0.00329 29 1.307 0.00336 74 5.323 0.00334 30 1.641 0.00337 77 3.009 0.00339 31 1.772 0.00342 78 3.393 0.00335 32 2.466 0.00337 79 3.777 0.00329 33 3.009 0.00338 80 2.466 0.00343 34 3.393 0.00333 81 3.009 0.00339 35 3.777 0.00319 82 3.393 0.00336 36 1.307 0.00332 83 3.777 0.00333 37 2.466 0.00341 337 7.168 0.00375 38 3.009 0.00333 339 8.113 0.00383 39 3.393 0.00331 340 8.618 0.00375 40 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
28 1.088 0.00331 73 3.777 0.00329 29 1.307 0.00336 74 5.323 0.00334 30 1.641 0.00337 77 3.009 0.00339 31 1.772 0.00342 78 3.393 0.00329 32 2.466 0.00337 79 3.777 0.00329 33 3.009 0.00338 80 2.466 0.00343 34 3.393 0.00333 81 3.009 0.00339 35 3.777 0.00319 82 3.393 0.00336 36 1.307 0.00332 83 3.777 0.00333 37 2.466 0.00341 337 7.168 0.00375 38 3.009 0.00333 339 8.113 0.00383 39 3.393 0.00331 340 8.618 0.00375 40 3.777 0.00328 342 7.168 0.00387 41 </td <td>1</td> <td></td> <td>1</td> <td></td> <td>t .</td> <td></td>	1		1		t .	
29 1. 307 0.00336 74 5. 323 0.00334 30 1. 641 0.00337 77 3.009 0.00339 31 1. 772 0.00342 78 3.393 0.00335 32 2. 466 0.00337 79 3. 777 0.00329 33 3.009 0.00338 80 2. 466 0.00343 34 3.393 0.00333 81 3.009 0.00339 35 3.777 0.00319 82 3.393 0.00336 36 1. 307 0.00332 83 3.777 0.00333 37 2. 466 0.00341 337 7. 168 0.00375 38 3. 009 0.00333 339 8. 113 0.00383 39 3. 393 0.00331 340 8. 618 0.00375 40 3. 777 0.00328 342 7. 168 0.00387 41 4. 162 0.00321 344 8. 113 0.00385 <t< td=""><td>1</td><td></td><td></td><td></td><td></td><td></td></t<>	1					
30 1.641 0.00337 77 3.009 0.00339 31 1.772 0.00342 78 3.393 0.00335 32 2.466 0.00337 79 3.777 0.00329 33 3.009 0.00338 80 2.466 0.00343 34 3.393 0.00333 81 3.009 0.00339 35 3.777 0.00319 82 3.393 0.00336 36 1.307 0.00332 83 3.777 0.00333 37 2.466 0.00341 337 7.168 0.00375 38 3.009 0.00333 339 8.113 0.00383 39 3.393 0.00331 340 8.618 0.00375 40 3.777 0.00328 342 7.168 0.00387 41 4.162 0.00321 344 8.113 0.00385 42 4.555 0.00332 347 7.168 0.00375 43 5.323 0.00338 349 8.113 0.00384 47 <td>1</td> <td></td> <td></td> <td>•</td> <td></td> <td>1</td>	1			•		1
31 1.772 0.00342 78 3.393 0.00335 32 2.466 0.00337 79 3.777 0.00329 33 3.009 0.00338 80 2.466 0.00343 34 3.393 0.00333 81 3.009 0.00339 35 3.777 0.00319 82 3.393 0.00336 36 1.307 0.00322 83 3.777 0.00333 37 2.466 0.00341 337 7.168 0.00375 38 3.009 0.00333 339 8.113 0.00383 39 3.393 0.00331 340 8.618 0.00375 40 3.777 0.00328 342 7.168 0.00387 41 4.162 0.00321 344 8.113 0.00385 42 4.555 0.00338 349 8.113 0.00384 43 5.323 0.00338 349 8.618 0.00354 4	l .		1			
32 2.466 0.00337 79 3.777 0.00329 33 3.009 0.00338 80 2.466 0.00343 34 3.393 0.00333 81 3.009 0.00339 35 3.777 0.00319 82 3.393 0.00336 36 1.307 0.00332 83 3.777 0.00333 37 2.466 0.00341 337 7.168 0.00375 38 3.009 0.00333 339 8.113 0.00383 39 3.393 0.00331 340 8.618 0.00375 40 3.777 0.00328 342 7.168 0.00387 41 4.162 0.00321 344 8.113 0.00385 42 4.555 0.00332 347 7.168 0.00375 43 5.323 0.00338 349 8.113 0.00384 47 0.711 0.00329 350 8.618 0.00354			i		1	
33 3.009 0.00338 80 2.466 0.00343 34 3.393 0.00333 81 3.009 0.00339 35 3.777 0.00319 82 3.393 0.00336 36 1.307 0.00332 83 3.777 0.00333 37 2.466 0.00341 337 7.168 0.00375 38 3.009 0.00333 339 8.113 0.00383 39 3.393 0.00331 340 8.618 0.00375 40 3.777 0.00328 342 7.168 0.00387 41 4.162 0.00321 344 8.113 0.00385 42 4.555 0.00332 347 7.168 0.00375 43 5.323 0.00338 349 8.113 0.00384 47 0.711 0.00329 350 8.618 0.00354	1	ľ		1	1	
34 3.393 0.00333 81 3.009 0.00339 35 3.777 0.00319 82 3.393 0.00336 36 1.307 0.00332 83 3.777 0.00333 37 2.466 0.00341 337 7.168 0.00375 38 3.009 0.00333 339 8.113 0.00383 39 3.393 0.00331 340 8.618 0.00375 40 3.777 0.00328 342 7.168 0.00387 41 4.162 0.00321 344 8.113 0.00385 42 4.555 0.00332 347 7.168 0.00375 43 5.323 0.00338 349 8.113 0.00384 47 0.711 0.00329 350 8.618 0.00354			1	i		
35 3.777 0.00319 82 3.393 0.00336 36 1.307 0.00332 83 3.777 0.00333 37 2.466 0.00341 337 7.168 0.00375 38 3.009 0.00333 339 8.113 0.00383 39 3.393 0.00331 340 8.618 0.00375 40 3.777 0.00328 342 7.168 0.00387 41 4.162 0.00321 344 8.113 0.00385 42 4.555 0.00332 347 7.168 0.00375 43 5.323 0.00338 349 8.113 0.00384 47 0.711 0.00329 350 8.618 0.00354					l .	
36 1.307 0.00332 83 3.777 0.00333 37 2.466 0.00341 337 7.168 0.00375 38 3.009 0.00333 339 8.113 0.00383 39 3.393 0.00331 340 8.618 0.00375 40 3.777 0.00328 342 7.168 0.00387 41 4.162 0.00321 344 8.113 0.00385 42 4.555 0.00332 347 7.168 0.00375 43 5.323 0.00338 349 8.113 0.00384 47 0.711 0.00329 350 8.618 0.00354	l.					
37 2.466 0.00341 337 7.168 0.00375 38 3.009 0.00333 339 8.113 0.00383 39 3.393 0.00331 340 8.618 0.00375 40 3.777 0.00328 342 7.168 0.00387 41 4.162 0.00321 344 8.113 0.00385 42 4.555 0.00332 347 7.168 0.00375 43 5.323 0.00338 349 8.113 0.00384 47 0.711 0.00329 350 8.618 0.00354	1		1		l .	
38 3.009 0.00333 339 8.113 0.00383 39 3.393 0.00331 340 8.618 0.00375 40 3.777 0.00328 342 7.168 0.00387 41 4.162 0.00321 344 8.113 0.00385 42 4.555 0.00332 347 7.168 0.00375 43 5.323 0.00338 349 8.113 0.00384 47 0.711 0.00329 350 8.618 0.00354				l		
39 3.393 0.00331 340 8.618 0.00375 40 3.777 0.00328 342 7.168 0.00387 41 4.162 0.00321 344 8.113 0.00385 42 4.555 0.00332 347 7.168 0.00375 43 5.323 0.00338 349 8.113 0.00384 47 0.711 0.00329 350 8.618 0.00354					1	i
40 3.777 0.00328 342 7.168 0.00387 41 4.162 0.00321 344 8.113 0.00385 42 4.555 0.00332 347 7.168 0.00375 43 5.323 0.00338 349 8.113 0.00384 47 0.711 0.00329 350 8.618 0.00354			· ·		1	1
41 4.162 0.00321 344 8.113 0.00385 42 4.555 0.00332 347 7.168 0.00375 43 5.323 0.00338 349 8.113 0.00384 47 0.711 0.00329 350 8.618 0.00354				1	1	
42 4.555 0.00332 347 7.168 0.00375 43 5.323 0.00338 349 8.113 0.00384 47 0.711 0.00329 350 8.618 0.00354						1
43 5. 323 0.00338 349 8.113 0.00384 47 0.711 0.00329 350 8.618 0.00354						1
47 0.711 0.00329 350 8.618 0.00354	1		i e		1	1
20 1.000 0.0000			i		1	

Table 4. Thermocouple Dimensional Location - HL-1B (Cont)

T/C No.	s/r'	Thickness (ft)	T/C No.	s/r'	Thickness (ft)
354 357 359 401 402 403 404	8.113 7.168 8.113 0.455 0.570 0.686 0.801	0.00383 0.00365 0.00358 0.00169 0.00167 0.00167	408 409 410 411 412 413 414 415	0.513 0.570 0.628 0.686 0.744 0.801 0.859 0.917	0.00165 0.00168 0.00162 0.00168 0.00167 0.00169 0.00167
405 406 407	1.051 1.167 1.283	0.00167 0.00168 0.00171	416 417	0.570 1.052	0.00156 0.00167

r' = 3.465

. .

H-2 and HL-1B Model Run Summary, AEDC Tunnel C, Mach Number 10 Table 5.

Remarks					No H/T Data	No H/T Data			_																								No H/T Data	No H/T Data	•				
Plots q, h/h _o vs s/r, s/r* Page	A-6 - A-11	A-12 - A-17	A-16 - A-29	A-30 - A-35	None	None	A-36 - A-41	A-42 - A-47	A-48 - A-53	A-54 - A-59	A-60 - A-65	A-66 - A-71	A-72 - A-77	A-78 - A-83	A-84 - A-89	A-90 - A-95	A-96 - A-101	A-102 - A-105	A-106 - A-111	A-112 - A-117	A-118 - A-123	A-124 - A-127		A-128 - A-131	A-132 - A-135	A-136 - A-139	A-140 - A-143		A-148 - A-151	A-152 - A-155	A-156 - A-159	A-160 - A-163	None	None	A-164 - A-167	A-168 - A-171	A-172 - A-175	A-176 - A-179	
Re/in. x 10-6	0.027	0.027	0.027	0.027	0.027	0.027	0.054	0.054	0.054	0.054	0.054	0.083	0.083	0.083	0.083	0.083	0.083	0.166	0, 166	0.166	0.166	0.166		0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.054	0.054	0.054	0.054	
Angle of Yaw (B) (deg)	0-	-	-																		-	. 0		С	, ,							•						-0	
Angle of Roll (Ø) (deg)	0.	-			-							-	0	180	0	-					-	0		_	·									-			-	0	
Angle of Attack (α) (deg)	0	0	υč	0 1	15	0 5	0,	· ·	, r.	10	15	0	0	0	o ur	. 5		ွ	o c	יע כ	01	15		c	· c	o C	νn	ייט	10	201		5.1	2 0	01	2 0	o c		10	
Group	10	14	11 :	71	13	0 7	147	01	16	12		30	34	3.5	3.5	3.5	22	3,6	2 5	37	- 00	36		-	⊣ ur	n oc	۰ ۸	1 ~	۰ ۳		. 4	• σ	44	27	- C C	2 60	1 7	22	
AEDC	-	-															-			_	-			=	; →	-											-	- =	:
Configurations	E,T,C,L,S,I,B	45 21 2 28 0 1	4															_			-	E F	43-27-2-28-6-1-8		E43127C2L2836K511B8	•												- U - U - U - U - U - U - U - U - U - U	E43 127 2 228 6 15 1 8

H-2 and HL-1B Model Run Summary, AEDC Tunnel C, Mach Number 10 (Cont) Table 5.

															_													_						_		_	_		
	Remarks															No H/T Data	No H/T Data														No H/T Data	NO III Data							
Plots q, h/hovs s/r, s/r*	Page	A-180 - A-183	A-188 - A-191	1	3	1	1	•	1	A-220 - A-223		A-224 - A-229	A-230 - A-235	A-236 - A-241	A-242 - A-247	None	None	A-248 - A-253	A-254 - A-259	A-260 - A-265	A-266 - A-271	A-272 - A-277	A-278 - A-283	A-284 - A-289	A-290 - A-295		A-296 - A-301	A-302 - A-307	A-308 - A-313	A-314 - A-319	None	None	A-326 - A-331	A-332 - A-337	A-338 - A-343	A-344 - A-349	A-350 - A-355		A-362 - A-367
Re/in.	× 10-6	0.054	0.083	0.083	0.083	0.083	0. 166	0. 166	0.166	0. 166		0.027	0.027	0.027	0.027	0.027	0.027	0.054	0.054	0.054	0.054	0.083	0.083	0.083	0.083		0.027	0.027	0.027	0.027	0.027	0.027	0.054	0.054	0.054	0.083	0.083	0.083	0.083
Angle of	Yaw (B) (deg)	0-								- 0	•	0												-	•0	,	0-	-			-					_		-	0
Angle of	Roll (Ø) (deg)	0	4					•			>	0			-					-				-	0		0	-	-					-				-	0
- Angle of		15	5 0	. 20	10	15	0	0	5	10	;	0	ιC	10	15	0	10	0	7.	10	15	0	ις	10	15		0	ĸ	10	15	0 ;	01	> u	n <u>c</u>	2 5	î O	, <u>1</u> 0	10	15
Group	Number	23	52	92	2.2	82	41	45	42	43	ļ	172	173	174	175	176	177	160	161	162	163	156	157	158	159		168	169	170	171	178	179	104	691	167	152	153	154	155
	AEDC	=-	-							-:	1	2	-	•										-	- 7		2.1	-										-	21
Configurations	NAA	E41T,7C, L,85,R,11B8								,	E43 127 C2 228 6 K5 1 B8	8 1 0	2_82_7	-									-	-	C, L, 85,	1 01 7.	C, L, S, R,	c 7 87 7	-									-	$C_2L_2^8S_2R_5$

H-2 and HL-1B Model Run Summary, AEDC Tunnel C, Mach Number 10 (Cont) Table 5.

No H/T Data No H/T Data No H/T Data Remarks q, h/h_o vs s/r, s/r* Page A-494 - A-499 A-500 - A-505 A-506 - A-511 A-512 - A-519 A-368 - A-373 A-374 - A-379 A-380 - A-385 A-386 - A-391 A-392 - A-397 A-398 - A-403 A-422 - A-427 A-428 - A-433 A-434 - A-439 A-540 - A-547 A-548 - A-553 A-452 - A-455 A-456 - A-459 A-472 - A-475 A-476 - A-479 A-480 - A-483 A-484 - A-487 A-520 - A-525 A-526 - A-533 A-534 - A-539 A-560 - A-565 A-410 - A-415 A-416 - A-421 A-444 - A-447 A-460 - A-463 A-464 - A-467 A-554 - A-559 A-404 - A-409 A-448 - A-451 A-468 - A-471 Plots None None 0.027 0.027 0.027 0.027 0.054 0.054 0.054 0.054 0.083 0.027 0.027 0.027 0.027 0.054 0.054 0.054 0.083 0.083 0.083 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 Re/in. x 10-6 Angle of Yaw (β) (deg) Angle of Roll (\$) (deg) 000 081 081 Angle of Attack (α) (deg) 180 168 151 151 149 147 147 147 147 147 0 10 10 10 10 10 10 10 11 15 Number 99 85 109 86 110 87 111 91 92 113 88 131 132 133 134 135 136 137 147 148 149 150 127 128 129 130 130 140 141 142 142 144 145 AEDC 23 g-77 ₹2 Configurations $C_2L_28^{S_2}R_5^{+t}$ $\mathrm{C_2L_28^S_2R_5^{+t}}_{\mathrm{r}}$ $c_2^{\rm L}{}_{28}^{\rm S}{}_2^{\rm +t}$ C2L282+tr C_2L_{28} NAA

H-2 and HL-1B Model Run Summary, AEDC Tunnel C, Mach Number 10 (Cont) Table 5.

AEDC Number Attack (a) (deg) Roll (9) (deg) Yaw (β) (deg) Aunger Oldeg) 30 112 145 180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x 10-6
112 145 180 89 143 0 90 130 0 98 168 0 98 168 0 105 151 0 106 149 180 106 149 180 107 147 0 83 147 0 84 147 0 85 145 180 80 145 180 94 180 0 95 180 0 96 168 0 96 168 0 97 180 0 96 168 0 101 147 0 102 149 180 70 147 180 70 147 0 104 145 180 72 147 0 104 145 0 72 147 0 104	A-566 A-574 A-580 A-586 A-592 A-604 A-610 A-610 A-610 A-622 A-628
89 143 0 90 130 0 97 180 0 98 168 0 105 151 0 106 149 180 107 147 0 107 147 0 83 147 0 84 147 0 85 147 0 86 145 0 94 180 0 95 180 0 96 168 0 97 147 0 101 143 0 102 149 0 103 147 0 104 145 0 103 147 0 104 145 0 105 147 0 104 145 0 105 147 0 104 145 0 104 145 0 104 145	A-574 - A-580 - A-586 - A-598 - A-604 - A-610 - A-616 - A-622 - A-628 -
90 130 0 98 168 0 77 180 0 105 151 180 106 149 0 107 147 0 83 147 0 84 147 0 80 149 180 80 145 0 94 180 0 95 180 0 96 151 180 101 151 0 102 149 0 103 147 0 104 145 0 105 149 0 107 147 0 108 147 0 109 147 0 100 149 180 100 140 145 180 100 140 145 180 100 160 0 101 160 0 102 160 0 103 160 0 104 145 180 105 160 0 106 160 0 107 160 0 108 160 0 109 160 0 100 0 1	A-580 - A-586 - A-592 - A-604 - A-610 - A-616 - A-616 - A-626 - A-628 -
97 180 0 98 168 0 77 151 0 105 151 180 106 149 180 107 147 0 83 147 0 84 147 0 89 147 0 80 145 0 94 148 0 95 180 0 96 168 0 97 168 0 96 168 0 101 151 180 102 149 0 103 147 0 104 145 180 104 145 0 104 145 0 104 145 0 105 0 0 53a 160 0 53a 160 0 53a 160 0 55 157 0 65 151 180 180 0 0 180 0 0 180 0 0 180 0 0	A-586 - A-592 - A-598 - A-604 - A-610 - A-622 - A-628 -
98 168 0 105 151 0 106 149 180 106 149 180 107 147 0 83 147 0 84 147 0 80 147 0 81 147 0 80 145 0 81 147 0 82 180 0 94 180 0 95 168 0 96 168 0 97 180 0 101 151 180 102 149 180 103 147 0 104 145 180 104 145 0 104 145 0 104 145 0 53a 160 0 53a 160 0 53a 160 0 55 157 0 50 149 0 65 180 0 180 0 0 180 0 0 180 0 0	083 A-592 - 083 A-598 - 083 A-604 - 083 A-610 - 083 A-628 -
77 151 0 105 151 180 78 149 180 106 149 180 79 147 0 83 147 0 84 147 0 85 147 0 80 145 0 81 147 0 94 180 0 95 168 0 96 151 180 101 151 180 102 149 0 103 147 0 76 147 0 77 147 0 70 149 180 71 147 0 72 145 0 73 145 0 74 130 0 53a 160 0 53 160 0 53 160 0 53 160 0 51 151 180 65 180 0 180 0 0 180 0 0 180 0 0	083 A-598 - 083 A-604 - 083 A-610 - 083 A-616 - 083 A-626 -
105 151 180 78 149 180 106 149 180 107 147 0 83 147 0 84 147 0 85 145 180 80 145 180 81 145 0 94 180 0 95 180 0 96 168 0 97 180 0 98 180 0 99 180 0 101 147 0 102 147 180 103 147 0 104 145 180 104 145 180 104 145 0 53 160 0 50 151 0 51 157 0 52 151 180 53 160 0 50 0 0 65 151 180 65 180 0 160 0 0 160 0 0 160 0 0 <t< td=""><td>083 A-604 - 083 A-610 - 083 A-616 - 083 A-622 - 083 A-628 - 083 A-628 - 083</td></t<>	083 A-604 - 083 A-610 - 083 A-616 - 083 A-622 - 083 A-628 - 083 A-628 - 083
78 149 0 106 149 180 79 147 0 83 147 0 84 147 0 84 147 0 84 147 0 80 145 180 94 180 0 95 180 0 96 168 0 97 180 0 98 180 0 101 149 180 102 149 180 103 147 0 104 145 0 104 145 0 104 145 0 53a 160 0 53a 160 0 55 157 0 50 151 180 65 151 180	083 A-610 - 083 A-622 - 083 A-628 - 083
106 149 180 79 147 0 107 147 0 83 147 0 84 147 0 80 145 0 81 147 0 82 180 0 94 180 0 95 180 0 96 180 0 97 180 0 98 180 0 101 149 0 102 149 180 103 147 0 104 145 0 105 143 0 53a 160 0 53a 160 0 53a 160 0 55 151 180 65 151 180	083 A-616 - 083 A-622 - 083 A-628 -
79 147 0 107 147 0 83 147 0 84 147 0 80 145 0 81 145 0 94 180 0 94 180 0 95 180 0 96 168 0 97 180 0 101 151 0 102 149 0 103 147 0 104 145 0 105 145 0 106 0 0 53a 160 0 53a 160 0 55 157 0 50 151 180 50 153 0 65 151 180	083 A-622 - 083 A-628 -
107 147 180 83 147 0 84 147 0 80 145 0 108 145 0 82 130 0 94 180 0 95 180 0 96 180 0 97 180 0 98 180 0 101 151 180 70 149 0 71 147 0 72 145 0 73 145 0 74 130 0 53a 160 0 53 160 0 53 151 180 50 153 0 65 151 180	083 A-628 -
83 147 0 84 147 0 86 145 0 108 145 0 81 143 0 94 180 0 95 180 0 96 168 0 101 151 0 102 149 180 70 147 0 103 147 0 104 145 180 73 143 0 53 160 0 53 160 0 69 180 17 147 0 180 0 180 0 191 180 192 180 193 180 194 130 0 195 180 196 180 197 180 198 180 199 180 190 180 190 180 191 180 192 180 193 180 194 130 0 195 180 196 197 180 197 180 198 180 199 180 199 180 199 180	
84 147 0 80 145 0 81 145 0 81 143 0 94 180 0 95 168 0 96 151 0 101 151 180 70 149 0 71 147 0 72 145 0 73 145 0 74 130 0 53a 160 0 50 151 180 50 153 160 0 50 151 180 50 151 180	1
80 145 0 108 145 180 81 143 0 82 130 0 94 180 0 95 180 0 96 168 0 101 151 180 102 149 180 70 147 0 72 147 0 74 145 0 53 160 0 53 160 0 53 160 0 65 151 180	083 A-640 - A-645
108 145 180 81 143 0 82 130 0 94 180 0 95 180 0 96 168 0 69 151 0 101 151 180 70 149 180 71 147 0 72 147 0 74 145 0 74 130 0 53a 160 0 53a 160 0 55 157 0 50 151 180 65 151 180 74 180 0	083 A-646 -
81 143 0 82 130 0 94 180 0 95 180 0 96 168 0 101 151 0 102 149 180 71 147 0 72 147 0 103 147 0 104 145 180 73 143 0 53 160 0 53 160 0 53 160 0 53 151 180	
82 130 0 94 180 0 95 180 0 96 168 0 69 151 0 101 151 0 102 149 180 71 147 0 72 145 0 104 145 0 73 146 0 53 160 0 53 160 0 51 151 180	0.083 A-660 - A-665
94 180 0 95 180 0 96 168 0 101 151 0 102 149 180 70 147 0 75 147 0 76 145 0 77 145 0 78 145 0 79 160 0 53 160 0 53 160 0 51 151 180	083 A-666 - A-671
95 180 0 96 168 0 101 151 180 102 149 180 70 147 0 75 147 0 76 147 0 76 147 0 77 145 0 78 145 0 79 160 0 53 160 0 51 151 180 70 149 180	200 A-672 - A-679
96 168 0 69 161 0 101 151 0 102 149 180 71 147 0 75 147 0 76 145 0 73 145 180 74 130 0 53 160 0 53 160 0 51 153 0 65 151 180 65 181 180	0.200 A-680 - A-685
69 151 0 101 151 180 70 149 180 71 147 0 75 147 0 76 145 0 77 145 0 74 143 0 53 160 0 53 160 0 51 151 180 65 151 180	200
101 151 180 70 149 0 102 149 180 71 147 0 103 147 180 75 147 0 72 145 0 104 145 0 74 130 0 53 160 0 53 160 0 51 153 0 65 151 180 40 149 180	200 A-694 -
70 149 0 102 149 180 71 147 0 103 147 180 75 147 0 72 145 0 104 145 0 74 130 0 53 160 0 53 160 0 51 153 0 65 151 180 40 149 180	200 A-702 -
102 149 180 71 147 0 103 147 0 75 147 0 72 145 0 104 145 0 73 143 0 53 160 0 53 160 0 51 157 0 65 151 180 50 149 180	A-710 -
71 147 0 103 147 180 75 147 0 76 147 0 72 145 0 104 145 180 73 143 0 53 160 0 53 160 0 53 150 0 54 153 0 65 151 180 50 149 180	200 A-718 -
103 147 180 75 147 0 76 147 0 72 145 0 104 145 180 73 143 0 53 160 0 53 160 0 53 160 0 53 150 0 65 151 180	A-726
75 147 0 76 147 0 72 145 0 104 145 180 73 143 0 53 160 0 53 160 0 51 157 0 65 151 180	200 A-734
76 147 0 72 145 0 104 145 0 73 143 0 74 130 0 53 160 0 52 157 0 51 153 0 65 151 180 50 149 180	0.200 A-742 - A-747
72 145 . 0 104 145 180 73 143 0 74 130 0 53 160 0 52 157 0 51 153 0 65 151 180	0.200 A-748 - A-753
104 145 180 73 143 0 74 130 0 53 160 0 52 157 0 51 153 0 65 151 180 50 149 180	0.200 A-754 - A-761
73 143 0 74 130 0 53 160 0 52 157 0 51 153 0 65 151 180	0.200 A-762 - A-769
53 160 0 53a 160 0 52 157 0 51 153 0 65 151 180	200
53 160 53a 160 52 157 51 153 65 151	0.200 A-770 - A-775
53a 160 52 157 51 153 65 151	0.083 A-776 - A-783
157 153 159	0.083 None No H/T Data
153	A-7
151	083
149	0.083 A-800 - A-805
149	0.083 A-814 - A-821
	083 A-822 - A-829

Table 5. H-2 and HL-1B Model Run Summary, AEDC Tunnel C, Mach Number 10 (Cont)

Configuration		Group	Angle of	Angle of	Angle of	Re/in.	Plots q, h/hovs s/r; s/r*	
NAA	AEDC	Number	Attack (a) (deg)	Roll (Ø) (deg)	Yaw (B) (deg)	× 10-6	Page	Remarks
1 1 0	31	29	143	180	0.	0.083	A-830 - A-837	
2-28 r ₁₅		89	140		-	0.083	A-838 - A-845	
}		52	157			0. 166	A-846 - A-853	
•		56	153			0.166	A-854 - A-861	
		61	151			0.166	A-862 - A-869	
		55	149	-		0.166	A-870 - A-877	
		09	147	180		0. 166	A-878 - A-885	
		64	147	0		0. 166	A-886 - A-893	
		63	145	0		0. 166	A-894 - A-901	
_		59	143	180		0.166	A-902 - A-909	
-	-	62	143	0	-	0. 166	A-910 - A-917	
C. L. +t	31	58	140	180	0	0.166	A-918 - A-925	
2 28 r ₁₅								
7	32	114	151	180	0	0.027	A-926 - A-931	
} -	-	115	149		-	0.027	A-932 - A-937	
	•	116	147	•	-	0.027	A-938 - A-943	
		118	147			0.027	None	No H/T Data
		117	145			0.027	A-944 - A-949	
		119	151			980.0	A-950 - A-955	
		120	149			0.086	A-956 - A-961	
		121	147		-	0.086	A-962 - A-967	
		122	145			0.086	A-968 - A-973	
		123	151			0.200	A-974 - A-979	
		124	149			0.200	A-980 - A-985	
-	-	125	147	-	-	0.200	A-986 - A-991	
−;`	32	12.6	147	180	0	0.200	A-992 - A-997	

Figure 1. Typical Launch and Entry Trajectories

Figure 2. Basic Dimension Sketch of Models

Figure 3. Configuration Tested with NAA and AEDC Designations

80x) .

Figure 4. Photos of Launch Configuration With and Without Service Module Reaction Control Motors (E43T27C2L28R5S6I1B8)

VIVIAIDICA

Figure 5. Photos of Command-Service Module Shown With Strakes and With and Without Service Module Reaction Control Motors ($C_2L_28S_2R_5$)

Figure 6. Photos of Command-Service Module With Boundary Layer Trip (C2L28S2+tr16)

Figure 7. Photos of Entry Configuration With Strakes and Steel Balls Mounted on Entry Face to Simulate Roughness ($C_2L_{28}+t_{r15}$)

Figure 8. Photos of Entry Configuration (C_2) With Sting Attachment

TYPICAL MODEL SHELL SUPPORT

L-THE THERMOCOUPLE LEAD IS
BROUGHT AWAY FROM THE
JUNCTION PARALLEL TO THE SKIN
FOR A DISTANCE OF AT LEAST 0.50 IN.

Figure 9. Thermocouple Installation in Models

Figure 10. Basic Dimensions of the Strake and Service Module Reaction Control Motors

Thermocouple Location on Command Module Configuration (C_2) Figure 11.

- 37-

Thermocouple Locations on Launch Configuration HL-1B ($\rm E_{43}T_{27}C_{2}L_{28}S_{6}I_{1}B_{8}$) and Command-Service Module Configuration H-2 ($\rm C_{2}S_{2}$) Figure 12.

100-98-10

Figure 13. Photos of Instrumentation Entry Configuration (C2)

30° BENT STING INSTALLED WITH MODEL ROTATED 180° $\phi = 180^{\circ}$

Figure 14. Sting Arrangement and Angle-of-Attack Range for the Entry Configuration (C₂)

-CONFIDENTIAL

Figure 15. Photos of Launch Configuration Installed in Tunnel (E $_{43}$ T $_{27}$ C $_{2}$ L $_{28}$ S $_{6}$ I $_{1}$ B $_{8}$)

Figure 17. H-2 Data Reduction System

- Average Division of the

CONFIDENTIAL

Figure 19. Effect of RCS Motors on Launch Configuration Heating Rates With Strakes (E43T27C2L28S6R5I1B8) (Re/in. = 27,000)

With Strakes (E43T27C2L28S6R5I1B8)

Figure 21. Effect of RCS Motors on Launch Configuration Heating Rates With Strakes (E₄₃T₂₇C₂L₂₈S₆R₅I₁B₈) (Re/in. = 166,000)

CONFIDENT

AFTER FLOW PATTERN WAS ESTABLISHED TIME≈3.0 SEC.

INITIAL ENTRY INTO TUNNEL

TIME ≈ 0

TOP VIEW 43

SIDE VIEW

4

Po = 215 PSIA M = 10.0 To = 1670°R $\alpha = 0^{\circ}$ $\phi = 0^{\circ}$

Photos of Oil Flow Photographs of Launch Configuration With Strakes and Service Module Reaction Control Motors at Zero-Degrees Angle of Attack (Re/in. = 27,000) Figure 22.

 $\alpha = 10^{\circ}$ $\phi = 0^{\circ}$

AFTER FLOW PATTERN WAS ESTABLISHED

INITIAL ENTRY INTO TUNNEL

TIME ≈ 3.0 SEC. 27

Strakes and Service Module Reaction Control Motors at 10 Degrees Angle Figure 23. Photos of Oil Flow Photographs of Launch Configuration With of Attack (Re/in. = 27,000)

- 49 -

25

COME

Mary Company of the Party of th

AFTER FLOW PATTERN WAS ESTABLISHED TIME ≈ 1.5 SEC

INITIAL ENTRY INTO TUNNEL

TIME ≈ 0

TOP VIEW

Po = 215 PSIA M = 10.0 To = 1670°R α = 0° Φ = 0°

SIDE VIEW

20

TOP VIEW

Po = 215 PSIA M = 10.0 To = 1670°R

 $\alpha = 0^{\circ}$ $\phi = 0^{\circ}$

17

Figure 24. Photos of Oil Flow Photographs of Launch Configuration With Strakes at Zero-Degrees Angle of Attack (Re/in. = 27,000)

Po = 215 PSIA M = 10.0 To = 1670°R

 $\alpha = 10$ $\phi = 0$

TOP VIEW

23

INITIAL ENTRY INTO TUNNEL

TIME ≈ 2.0 SEC

AFTER FLOW PATTERN WAS ESTABLISHED

 $P_0 = 215 \text{ PSIA} \quad M = 10.0$ $T_0 = 1670^{\circ}R$ $\alpha = 10^{\circ}$ $\phi = 0^{\circ}$

SIDE VIEW

Figure 25. Photos of Oil Flow Photographs of Launch Configuration With Strakes at 10 Degrees Angle of Attack (Re/in. = 27,000)

22

AFTER FLOW PATTERN WAS ESTABLISHED TIME ≈ 3.0 SEC

 $\alpha = 0^{\circ}$ $\phi = 0^{\circ}$

Po = 215 PSIA M = 10.0 To = 1670°R

SIDE VIEW

Po = 215 PSIA M = 10.0 To = 1670°R

α = 0° Φ = 0°

Figure 26. Photos of Oil Flow Photographs of Command-Service Modules,

With Reaction Control Motors, at Zero Degrees Angle of Attack (Re/in. = 27,000)

AFTER FLOW PATTERN WAS ESTABLISHED TIME ≈ 2.0 SEC

TIME ≈ 0

 $\alpha = 10^{\circ}$ $0 = \phi$

38) SIDE VIEW

40 SIDE VIEW

Figure 27. Photos of Oil Flow Photographs of the Command-Service Module, With Strakes and Reaction Control Motors, at 10 Degrees Angle of Attack (Re/in. = 27,000)

 $P_0 = 215 \text{ PSIA } M = 10.0$ $T_0 = 1670^{\circ}R$

 $\alpha = 10^{\circ}$ $0 = \phi$

TOP VIEW

37

AFTER FLOW PATTERN WAS ESTABLISHED TIME ≈ 3.0 SEC

TIME ≈ 0

TOP VIEW

Po = 215 PSIA M = 10.0 To = 1670°R α = 0° φ = 0°

Figure 28. Photos of Oil Flow Photographs of Command-Service Module With Strakes at Zero-Degrees Angle of Attack (Re/in. = 27,000)

SIDE VIEW

9

AFTER FLOW PATTERN WAS ESTABLISHED

TIME ≈ 1.5 SEC

INITIAL ENTRY INTO TUNNEL

TIME ≈ 0

TOP VIEW $\alpha = 10^{\circ}$ $\phi = 0^{\circ}$ 35

Po = 215 PSIA M = 0 $To = 1670^{\circ}R$

SIDE VIEW 36

TOP VIEW

33

Po = 215 PSIA M = 10.0 To = 1670°R

SIDE VIEW

34

Figure 29. Photos of Oil Flow Photographs of Command-Service Module With Strakes at 10-Degrees Angle of Attack (Re/in. = 27,000)

 $\alpha = 10^{\circ}$ $\phi = 0$

Figure 30. Heating Rates on Windward Side of Strake Versus Angle of Attack (C₂ Configuration) (Re/in. = 27,000)

Figure 31. Heating Rates on Windward Side of Strake Versus Angle of Attack (C₂ Configuration) (Re/in. = 200,000)

Figure 32. Effect of Strakes on Windward Afterbody Heating Rates Near Entry Angle of Attack (C₂ configuration) (Re/in. = 27, 500)

Figure 33. Effect of Strakes on Windward Afterbody Heating Rate Near Entry Angle of Attack (C₂ configuration) (Re/in. = 83, 300)

Figure 34. Effect of Strakes on Windward Afterbody Heating Rates Near Entry Angle of Attack (C₂ configuration) (Re/in. = 200,000)

RE/IN. = 200,000

300°

300°

300°

300°

1.0

270°

270°

1.1

270°

270°

270°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

300°

30

CONTIDENTIAL

Figure 35.

The Effect of Strakes on Afterbody Heating at Two Reynolds Numbers (Re/in. = 83,300

and 200,000) ($\alpha = 147^{\circ}$)

- 61 -

COMMITTAL

Figure 36. Mapping of the Command Module Afterbody Heating Rate Ratio (H/H₀) (Re/in. = 200,000) (α = 147°)

CONTIDENTIAL

(Re/in. = 27, 500) ($\alpha = 147^{\circ}$)

Po = 215 PSIA M = To = 1670°R

TOP VIEW

 $\alpha = 147^{\circ}$ $0 = \phi$

AFTER FLOW PATTERN WAS ESTABLISHED TIME ≈ 5.0 SEC 31 INITIAL ENTRY INTO TUNNEL

TIME ≈ 0

SIDE VIEW 30

Figure 39. Photos of Oil Flow Photographs of Entry Configuration With Strakes at 147-Degrees Angle of Attack (Re/in. = 27,500)

- 65 -

 $\alpha = 147^{\circ}$ $\phi = 0$

TOP VIEW

29

 $P_0 = 215 \text{ PSIA } M = 10.0$ $T_0 = 1670^{\circ}R$

AFTER FLOW PATTERN WAS ESTABLISHED TIME ≈ 4.0 SEC

TIME ≈ 0

 $\alpha = 147^{\circ}$ Po = 215 PSIA M = 10.0 $\phi = 180^{\circ}$ To = 1670°R

SIDE VIEW

TOP VIEW

 $\alpha = 147^{\circ}$ Po = 215 PSIA M = 10.0 $\phi = 180^{\circ}$ To = 1670°R

Figure 40. Photos of Oil Flow Photographs of Entry Configuration With Strakes at 147-Degrees Angle of Attack and Model Rolled 180 Degrees (Re/in. = 27,500)

INITIAL ENTRY INTO TUNNEL 0 TIME

AFTER FLOW PATTERN WAS ESTABLISHED 4.0 SEC TIME

Po = 215 PSIA M = 10.0 To = 1670°R

SIDE VIEW

Figure 41. Photos of Oil Flow Photographs of Entry Configuration Without Strakes at 147-Degrees Angle of Attack and Model Rolled 180 Degrees (Re/in. = 27, 500)

Po = 215 PSIA M = 10.0 To = 1670°R

 $\alpha = 147^{\circ}$ $\phi = 180^{\circ}$

Figure 42. Variation of Heat Transfer Rate on Afterbody of Command Module at 147-Degrees Angle of Attack at Various Yaw Angles (Re/in. = 83,300)

Figure 43. Variation of Heat Transfer Rate on Afterbody of Command Module at 147-Degrees Angle of Attack at Various Yaw Angles (Re/in. = 200,000)

CONTRACTOR

VOITELITIME

CONFIDENCE

Figure 46. Variation of Heating Rates on the Command Module Entry Face at Various Angles of Attack (Re/in. = 200,000)

CONFIDENTIAL